What is Few-Shot Prompting?
A prompting method where models are shown a small number of examples to guide their outputs for new tasks.
More about Few-Shot Prompting:
Few-Shot Prompting is a technique where an LLM is given a handful of example inputs and outputs within its prompt, helping it learn the desired pattern, style, or logic for a new task. Few-shot prompting is foundational for chain-of-thought reasoning, system prompts, and on-the-fly model adaptation.
It’s especially useful for zero-code configuration and when large amounts of training data aren’t available.
Frequently Asked Questions
How is few-shot prompting different from fine-tuning?
Few-shot prompting adapts behavior at inference time with prompt examples, while fine-tuning requires model retraining.
What types of tasks benefit from few-shot prompting?
Tasks like code generation, dialogue, math problems, and language translation.
From the blog
Fine-tuning your custom ChatGPT chatbot
Finetuning your custom chatbot is a crucial step in ensuring that it can answer your visitors questions correctly and with the best possible information.
Herman Schutte
Founder
ChatGPT 3.5 vs ChatGPT 4 for customer support
Now that the latest version of ChatGPT 4 has been released, users of SiteSpeakAI can use the latest model for their customer support automation. I've put ChatGPT 3.5 and ChatGPT 4 to the test with some customer support questions to see how they compare.
Herman Schutte
Founder