What is Dense Retrieval?
A retrieval method that uses dense vector embeddings, enabling semantic search and advanced contextual retrieval.
More about Dense Retrieval:
Dense Retrieval uses dense vector embeddings to match queries with documents based on semantic similarity, rather than relying on exact term matching. Models like bi-encoders and cross-encoders are often employed to create these embeddings.
Dense retrieval is a key component in systems like RAG and semantic search, providing superior accuracy in understanding user intent and delivering relevant results.
Frequently Asked Questions
What are the advantages of dense retrieval over sparse retrieval?
Dense retrieval captures semantic relationships between words, making it ideal for tasks like contextual retrieval.
What tools or models are commonly used for dense retrieval?
Popular tools include vector databases, powered by models like BERT and RoBERTa.
From the blog
Fixing your Image Alt tags and SEO issues with AI
Optimizing your website's SEO can be complex and time-consuming, especially when it comes to image alt tags, title tags, and structured data. Sitetag, an AI-powered SEO tool, makes this process effortless. With just one script tag, Sitetag automatically enhances your website’s SEO elements, ensuring better search visibility and improved user experience—all without the manual work. Ready to simplify your SEO? Discover how Sitetag can transform your site today.
Herman Schutte
Founder
Unleashing the Power of AI: Adding a ChatGPT Chatbot to Your Website
An AI chatbot can serve as a dynamic tool to improve your site's user experience by providing instant, accurate responses to your visitors' queries. However, not all chatbots are created equal.
Herman Schutte
Founder