What is a Cross-Encoder?
A type of encoder that jointly processes query-document pairs to determine relevance.
More about Cross-Encoder:
Cross-Encoders take a query and a document as input and process them together through a single model to calculate relevance. Unlike bi-encoders, which generate embeddings independently, cross-encoders allow for finer-grained relevance scoring by considering the interaction between query and document.
Cross-encoders are often used in tasks requiring high accuracy, such as re-ranking candidates retrieved by dense retrieval or hybrid search.
Frequently Asked Questions
What are the advantages of cross-encoders?
They provide higher relevance accuracy by analyzing query-document interactions directly.
When should cross-encoders be used over bi-encoders?
Cross-encoders are better for re-ranking results, while bi-encoders are more efficient for large-scale retrieval.
From the blog

Using AI to make learning personal and increase your online course sales
Incorporating AI into your courses allows you to create a personalized learning environment that adapts to each student's needs. This personal touch doesn't just improve the learning experience; it also makes your courses more attractive and can increase sales. Let's explore how AI can make online courses more personal and commercially successful.

Herman Schutte
Founder

Create an AI version of yourself for your coaching business
Harnessing the power of Artificial Intelligence is no longer reserved for tech giants or sci-fi enthusiasts. As a coach, what if you could scale your expertise, offering guidance at any hour without extending your workday?

Herman Schutte
Founder