What is In-Context Learning?
A method where models are guided to perform tasks using examples provided in the input prompt.
More about In-Context Learning:
In-Context Learning enables AI models to perform tasks by including examples or context directly in the input prompt. This approach leverages pre-trained models like PLMs to adapt to new tasks without additional fine-tuning.
In-context learning is particularly effective for tasks like question answering, prompt engineering, and retrieval fusion, where contextual examples guide model behavior.
Frequently Asked Questions
How does in-context learning differ from few-shot learning?
In-context learning provides examples in the input prompt, while few-shot learning involves fine-tuning with minimal labeled data.
What tasks are well-suited for in-context learning?
Tasks like semantic search, context-aware generation, and dialogue systems benefit greatly from in-context learning.
From the blog

How SiteSpeakAI's YouTube Summarizer Can Transform Your Content Creation Strategy
Discover how SiteSpeakAI's YouTube Summarizer can revolutionize your content strategy. Learn to transform YouTube videos into SEO-optimized articles for your blog or website in under a minute. Boost engagement and search rankings effortlessly. Explore now.

Herman Schutte
Founder

Using AI to make learning personal and increase your online course sales
Incorporating AI into your courses allows you to create a personalized learning environment that adapts to each student's needs. This personal touch doesn't just improve the learning experience; it also makes your courses more attractive and can increase sales. Let's explore how AI can make online courses more personal and commercially successful.

Herman Schutte
Founder