What are Augmented Language Models?
Language models enhanced with external knowledge sources, such as embeddings or vector databases, to improve performance in tasks like retrieval and question answering.
More about Augmented Language Models:
Augmented Language Models are enhanced versions of traditional language models that incorporate external knowledge sources or retrieval mechanisms. These models integrate resources like knowledge graphs or vector databases to deliver contextually rich and accurate responses.
Augmentation helps address limitations of standalone language models by enabling them to access real-time or domain-specific information, making them ideal for applications like knowledge retrieval and question answering.
Frequently Asked Questions
Why are augmented language models important?
They improve the factual accuracy and contextual richness of responses by integrating external knowledge sources, such as retrieval augmentation pipelines.
What tasks benefit most from augmented language models?
Tasks like context-aware generation, content personalization, and open-domain question answering benefit greatly from augmented language models.
From the blog

Revolutionizing University Engagement with AI Chatbots: A Look at SiteSpeakAI
Explore how universities are leveraging AI chatbots to enhance student engagement and streamline administrative tasks. Discover SiteSpeakAI, a tool that trains chatbots on website content to answer visitor queries.

Herman Schutte
Founder

IT Help Desk Automation with SiteSpeakAI
In a world thatβs constantly evolving, having a robust IT help desk is no longer a choice but a necessity for businesses. But, how can you ensure that your help desk is able to respond to queries swiftly and accurately? The answer lies in automation, and one tool that is making waves in this domain is SiteSpeakAI.

Herman Schutte
Founder