What is a Retrieval Augmentation Pipeline?
A system that combines retrieval and generation processes to enhance AI model outputs with relevant knowledge.
More about Retrieval Augmentation Pipeline:
Retrieval Augmentation Pipeline integrates retrieval systems and generative models to produce knowledge-grounded outputs. The pipeline retrieves relevant information from sources like vector databases or knowledge graphs and passes it to a generative model to produce accurate and contextually rich responses.
This approach is widely used in frameworks like retrieval-augmented generation (RAG) and context-aware generation, ensuring responses are factual and relevant.
Frequently Asked Questions
How does a retrieval augmentation pipeline improve AI outputs?
It ensures responses are grounded in reliable information, reducing hallucinations and improving factual accuracy.
What components are commonly part of a retrieval augmentation pipeline?
Key components include retrieval models, embeddings, and generative AI models.
From the blog
How to Train ChatGPT With Your Own Website Data
Training ChatGPT with your own data can provide the model with a better understanding of your unique context, allowing for more accurate and relevant responses.
Herman Schutte
Founder
How AI Assistants Can Help Service Businesses Book More Jobs
Need more time and leads as a service business owner? An AI chatbot for your service business may be the solution. See how AI can help today.
Herman Schutte
Founder