What are Embeddings?
Dense numerical representations of data, such as text or images, used in tasks like semantic search and retrieval.
More about Embeddings:
Embeddings are dense vectors generated by neural network models to represent data, such as text, sentences, or images, in a high-dimensional space. They are designed to capture semantic relationships and similarities between data points.
Embeddings are foundational to technologies like dense retrieval, semantic search, and contextual embeddings, enabling AI systems to perform tasks such as knowledge retrieval and document similarity.
Frequently Asked Questions
How are embeddings used in AI applications?
They enable models to understand semantic relationships, making tasks like retrieval fusion and question answering more effective.
What models are commonly used to generate embeddings?
Models like BERT, GPT, and sentence transformers are widely used for generating embeddings.
From the blog

Unleashing the Power of AI: Adding a ChatGPT Chatbot to Your Website
An AI chatbot can serve as a dynamic tool to improve your site's user experience by providing instant, accurate responses to your visitors' queries. However, not all chatbots are created equal.

Herman Schutte
Founder

Enhancing ChatGPT with Plugins: A Comprehensive Guide to Power and Functionality
Explore the world of chatgpt plugins and how they empower chatbots with features like browsing, content creation, and more. Learn how SiteSpeakAI supports plugins to make its chatbots some of the most powerful available.

Herman Schutte
Founder