What are Contextual Embeddings?
Embeddings that capture the meaning of words or phrases based on the surrounding context.
More about Contextual Embeddings:
Contextual Embeddings are vector representations of words, phrases, or sentences that capture their meaning within a specific context. Unlike static embeddings, contextual embeddings adjust their representation based on the input sequence, making them ideal for tasks like semantic search and dense retrieval.
These embeddings are crucial for systems like retrieval-augmented generation (RAG), where understanding context improves the relevance and accuracy of results.
Frequently Asked Questions
How do contextual embeddings differ from static embeddings?
Contextual embeddings adjust their representation based on surrounding context, while static embeddings remain fixed.
What models are commonly used for generating contextual embeddings?
Models like BERT, RoBERTa, and GPT are widely used for generating contextual embeddings.
From the blog
Fixing your Image Alt tags and SEO issues with AI
Optimizing your website's SEO can be complex and time-consuming, especially when it comes to image alt tags, title tags, and structured data. Sitetag, an AI-powered SEO tool, makes this process effortless. With just one script tag, Sitetag automatically enhances your website’s SEO elements, ensuring better search visibility and improved user experience—all without the manual work. Ready to simplify your SEO? Discover how Sitetag can transform your site today.
Herman Schutte
Founder
Unleashing the Power of AI: Adding a ChatGPT Chatbot to Your Website
An AI chatbot can serve as a dynamic tool to improve your site's user experience by providing instant, accurate responses to your visitors' queries. However, not all chatbots are created equal.
Herman Schutte
Founder