What is Human Feedback (RLHF)?
A training method where human preferences or corrections are used to align and improve AI model behavior.
More about Human Feedback (RLHF):
Human Feedback (RLHF) stands for Reinforcement Learning from Human Feedback—a technique where AI models are trained using ratings, corrections, or preferences provided by human annotators. RLHF is used to fine-tune LLMs for safer, more helpful, and aligned responses in chatbots, agents, and guardrails enforcement.
RLHF is foundational for building ethical AI, improving performance in system prompts, and handling ambiguous or value-laden queries.
Frequently Asked Questions
Why is RLHF important for LLMs and agents?
It helps align models with human values and societal expectations, improving safety and usefulness.
How is human feedback collected for RLHF?
Through ratings, corrections, or preference comparisons given by human reviewers on model outputs.
From the blog

How to Train ChatGPT With Your Own Website Data
Training ChatGPT with your own data can provide the model with a better understanding of your unique context, allowing for more accurate and relevant responses.

Herman Schutte
Founder

Using AI to make learning personal and increase your online course sales
Incorporating AI into your courses allows you to create a personalized learning environment that adapts to each student's needs. This personal touch doesn't just improve the learning experience; it also makes your courses more attractive and can increase sales. Let's explore how AI can make online courses more personal and commercially successful.

Herman Schutte
Founder