What Is Fine-Tuning in AI?
Adjusting a pre-trained model to perform better on specific tasks or datasets.
More about Fine-Tuning:
Fine-tuning is the process of making small adjustments to a pre-trained model to improve its accuracy on a particular set of data or tasks. This is often done by continuing the training process with a smaller, more specific dataset, allowing the model to better adapt to the nuances of the new information.
Frequently Asked Questions
Why is fine-tuning important in AI?
Fine-tuning is crucial because it helps to adapt a general-purpose model to perform better on tasks specific to certain industries or data types.
How is fine-tuning different from training a model from scratch?
Fine-tuning starts with a model that has already learned general features from a large dataset, whereas training from scratch involves building a model's knowledge base from the ground up.
From the blog

How AI Assistants Can Help Service Businesses Book More Jobs
Need more time and leads as a service business owner? An AI chatbot for your service business may be the solution. See how AI can help today.

Herman Schutte
Founder

How to Train ChatGPT With Your Own Website Data
Training ChatGPT with your own data can provide the model with a better understanding of your unique context, allowing for more accurate and relevant responses.

Herman Schutte
Founder