What Is Fine-Tuning in AI?
Adjusting a pre-trained model to perform better on specific tasks or datasets.
More about Fine-Tuning:
Fine-tuning is the process of making small adjustments to a pre-trained model to improve its accuracy on a particular set of data or tasks. This is often done by continuing the training process with a smaller, more specific dataset, allowing the model to better adapt to the nuances of the new information.
Frequently Asked Questions
Why is fine-tuning important in AI?
Fine-tuning is crucial because it helps to adapt a general-purpose model to perform better on tasks specific to certain industries or data types.
How is fine-tuning different from training a model from scratch?
Fine-tuning starts with a model that has already learned general features from a large dataset, whereas training from scratch involves building a model's knowledge base from the ground up.
From the blog

Using AI to make learning personal and increase your online course sales
Incorporating AI into your courses allows you to create a personalized learning environment that adapts to each student's needs. This personal touch doesn't just improve the learning experience; it also makes your courses more attractive and can increase sales. Let's explore how AI can make online courses more personal and commercially successful.

Herman Schutte
Founder

Automate your customer support and marketing with Zapier and SiteSpeakAI
With the power of Zapier's 6000+ available apps and integrations, you can now connect your chatbot to your favorite tools and completely automate every aspect of your customer support and brand marketing.

Herman Schutte
Founder