What is RAG Tokenization?
A tokenization method optimized for retrieval-augmented generation to balance efficiency and accuracy.
More about RAG Tokenization:
RAG Tokenization refers to the process of splitting input text into tokens specifically optimized for frameworks like retrieval-augmented generation (RAG). Proper tokenization ensures that retrieval and generation components interact efficiently, minimizing token limits while retaining contextual relevance.
This method is essential for balancing the context window size and accuracy in tasks like knowledge-grounded generation and context-aware generation.
Frequently Asked Questions
Why is RAG tokenization important?
It ensures optimal interaction between retrieval and generation components, improving the quality of outputs in RAG frameworks.
What challenges arise with RAG tokenization?
Challenges include managing token limits in the context window and ensuring retrieval efficiency.
From the blog

Why Are Chatbots a Great Tool for Strategically Using Marketing Automation and AI?
Discover the synergy between chatbots, marketing automation, and AI. Learn how tools like SiteSpeakAI are revolutionizing the way businesses engage with customers and streamline marketing efforts.

Herman Schutte
Founder

ChatGPT 3.5 vs ChatGPT 4 for customer support
Now that the latest version of ChatGPT 4 has been released, users of SiteSpeakAI can use the latest model for their customer support automation. I've put ChatGPT 3.5 and ChatGPT 4 to the test with some customer support questions to see how they compare.

Herman Schutte
Founder