What are Retrieval-based Models?
AI models that rely on retrieving relevant information, often using techniques like sparse retrieval or dense retrieval, rather than generating responses from scratch.
More about Retrieval-based Models:
Retrieval-based Models are AI systems designed to fetch and present the most relevant information from a predefined dataset or knowledge base. These models often utilize sparse retrieval methods for term-based matching or dense retrieval to capture semantic relationships.
Retrieval-based models are widely used in semantic search, question answering, and recommendation systems, where accuracy and relevance are crucial.
Frequently Asked Questions
What is the main advantage of retrieval-based models?
They provide highly accurate and fact-based responses by retrieving pre-existing information from reliable sources, such as vector databases.
How do retrieval-based models differ from generative models?
Retrieval-based models fetch existing data, while generative models create new text using approaches like RAG.
From the blog

Automate your customer support and marketing with Zapier and SiteSpeakAI
With the power of Zapier's 6000+ available apps and integrations, you can now connect your chatbot to your favorite tools and completely automate every aspect of your customer support and brand marketing.

Herman Schutte
Founder

Revolutionizing University Engagement with AI Chatbots: A Look at SiteSpeakAI
Explore how universities are leveraging AI chatbots to enhance student engagement and streamline administrative tasks. Discover SiteSpeakAI, a tool that trains chatbots on website content to answer visitor queries.

Herman Schutte
Founder