What is Sparse Retrieval?
A retrieval method that uses traditional term-matching techniques, such as TF-IDF or BM25, to find relevant documents.
More about Sparse Retrieval:
Sparse Retrieval is a traditional information retrieval method that relies on term-matching algorithms like TF-IDF (Term Frequency-Inverse Document Frequency) or BM25. These techniques rank documents based on the presence and importance of terms in the query.
While sparse retrieval is less effective for understanding semantics compared to dense retrieval, it remains efficient and interpretable, making it useful for applications where exact term matching is sufficient or preferred.
Frequently Asked Questions
How does sparse retrieval compare to dense retrieval?
Sparse retrieval focuses on exact term matching, while dense retrieval captures semantic relationships.
What are common algorithms used in sparse retrieval?
Algorithms like BM25 and TF-IDF are foundational to sparse retrieval systems.
From the blog
Fixing your Image Alt tags and SEO issues with AI
Optimizing your website's SEO can be complex and time-consuming, especially when it comes to image alt tags, title tags, and structured data. Sitetag, an AI-powered SEO tool, makes this process effortless. With just one script tag, Sitetag automatically enhances your website’s SEO elements, ensuring better search visibility and improved user experience—all without the manual work. Ready to simplify your SEO? Discover how Sitetag can transform your site today.
Herman Schutte
Founder
How AI Chatbots Can Save You 100s Of Hours In Customer Support
Dive into the transformative power of AI chatbots in customer support. Learn how businesses can save significant time and enhance customer satisfaction, with a look at tools like SiteSpeakAI.
Herman Schutte
Founder