What is Knowledge Distillation?
A technique where a smaller model learns from a larger, more complex model, retaining critical knowledge while reducing size.
More about Knowledge Distillation:
Knowledge Distillation is a machine learning process where a smaller model, called the "student," learns to replicate the performance of a larger, more complex model, called the "teacher." This is achieved by transferring knowledge from the teacher to the student through training on the outputs or intermediate representations of the teacher model.
This technique is widely used to optimize models for deployment in resource-constrained environments, ensuring that they retain critical capabilities for tasks like document retrieval and semantic search.
Frequently Asked Questions
What are the benefits of knowledge distillation?
It reduces model size and computational requirements while maintaining performance, making it ideal for edge deployments.
In which AI applications is knowledge distillation commonly used?
Applications include dense retrieval, embeddings, and retrieval latency optimization.
From the blog

Custom model training and fine-tuning for GPT-3.5 Turbo
Today OpenAI announced that businesses and developers can now fine-tune GPT-3.5 Turbo using their own data. Find out how you can create a custom tuned model trained on your own data.

Herman Schutte
Founder

IT Help Desk Automation with SiteSpeakAI
In a world that’s constantly evolving, having a robust IT help desk is no longer a choice but a necessity for businesses. But, how can you ensure that your help desk is able to respond to queries swiftly and accurately? The answer lies in automation, and one tool that is making waves in this domain is SiteSpeakAI.

Herman Schutte
Founder